Pattern recognition /
This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-d...
Κύριος συγγραφέας: | Θεοδωρίδης, Σέργιος. |
---|---|
Άλλοι συγγραφείς: | Koutroumbas, Konstantinos, 1967- |
Μορφή: | Βιβλίο |
Γλώσσα: | English |
Στοιχεία έκδοσης: |
Burlington, MA ; London :
Academic Press,
c2009.
|
Έκδοση: | 4th ed. |
Θέματα: | |
Διαθέσιμο Online: |
http://www.sciencedirect.com/science/book/9781597492720 |
Ετικέτες: |
Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
|
Πίνακας περιεχομένων:
- 1. Introduction
- 2. Classifiers based on Bayes Decision
- 3. Linear Classifiers
- 4. Nonlinear Classifiers
- 5. Feature Selection
- 6. Feature Generation I: Data Transformation and Dimensionality Reduction
- 7. Feature Generation II
- 8. Template Matching
- 9. Context Depedant Clarification
- 10. System Evaultion
- 11. Clustering: Basic Concepts
- 12. Clustering Algorithms: Algorithms L Sequential
- 13. Clustering Algorithms II: Hierarchical
- 14. Clustering Algorithms III: Based on Function Optimization
- 15. Clustering Algorithms IV: Clustering
- 16. Cluster Validity.
- Classifiers based on Bayes Decision Theory
- Linear classifiers
- Nonlinear classifiers
- Feature selection
- Feature generation I : data transformation and dimensionality reduction
- Feature generation II
- Template matching
- Context-dependent classification
- Supervised learning : the epilogue
- Clustering algorithms I : sequential algorithms
- Clustering algorithms II : hierarchial algorithms
- Clustering algorithms III : schemes based on function optimization
- Clustering algorithms IV
- Cluster validity.