Handbook of process algebra

Process Algebra is a formal description technique for complex computer systems, especially those involving communicating, concurrently executing components. It is a subject that concurrently touches many topic areas of computer science and discrete math, including system design notations, logic, con...

Πλήρης περιγραφή

Άλλοι συγγραφείς: Bergstra, J. A., Ponse, A. 1955-, Smolka, Scott A.
Μορφή: Ηλεκτρονική πηγή
Γλώσσα: English
Στοιχεία έκδοσης: Amsterdam ; New York : Elsevier, 2001.
Έκδοση: 1st ed.
Θέματα:
Διαθέσιμο Online: http://www.sciencedirect.com/science/book/9780444828309
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
Πίνακας περιεχομένων:
  • Preface (Bergstra, Ponse, Smolka). Part 1: Basic Theory. The linear time
  • brancing time spectrum I (Van Glabbeek). Trace-oriented models of concurrency (Broy, Olderog). Structural operational semantics (Aceto, Fokkink, Verhoef). Modal logics and mu-calculi: an intorduction (Bradfield, Stirling). Part 2: Finite-State Processes. Process algebra with recursive operations (Bergstra, Fokkink, Ponse). Equivalence and preorder checking for finite-state systems (Cleaveland, Sokolsky). Part 3: Infinite-State Processes. A symbolic approach to value-passing processes (Ingolfsdottir, Lin). An introduction to the pi-calculus (Parrow). Verification on infinite structures (Bukart, Caucal, Moller, Steffen). Part 4: Extensions. Process algebra with timing: real time and discrete time (Baeten, Middelburg). Probabilistic extensions of process algebras (Jonsson, Larsen, Yi). Priority in process algebra (Cleaveland, Luettgen, Natarajan). Part 5: Non-Interleaving Process Algebra. Partial-order process algebra (Baeten, Basten). A unified model for nets and process algebras (Best, Devillers, Koutny). Process algebras with localities (Castellani). Action refinement (Gorrieri, Rensink). Part 6: Tools and Applications. Algebraic process vertification (Groote, Reniers). Discrete time process algebra and the semantics of SDL (Bergstra, Middelburg, Usenko). A process algebra for Interworkings (Mauw, Reniers).