|
|
|
|
LEADER |
02021cam a2200337 a 4500 |
001 |
1/45653 |
008 |
141208s2013 enk b 001 0 eng |
020 |
|
|
|a 9783642375828
|
035 |
|
|
|l 48617
|
040 |
|
|
|a DLC
|b eng
|c DLC
|e rda
|d GR-PeUP
|
082 |
0 |
0 |
|a 621.39΄9 VIS
|
245 |
0 |
0 |
|a Visual analytics of movement /
|c Gennady Andrienko, Natalia Andrienko, Peter Bak, Daniel Keim, Stefan Wrobel.
|
260 |
|
1 |
|a Berlin ;
|a Heidelberg :
|b Springer-Verlag,
|c 2013.
|
300 |
|
|
|a xviii, 387 σ. :
|b εικ. ;
|c 23 εκ.
|
500 |
|
|
|a Περιέχει βιβλιογραφία και ευρετήριο.
|
500 |
|
|
|a Περιεχόμενα: Conceptual framework - Transformations of movement data - Visual analytics infrastructure - Visual analytics focusing on movers - Visual analytics focusing on spatial events - Visual analytics focusing on space - Visual analytics focusing on time - Discussion and outlook.
|
500 |
|
|
|a Περίληψη: This chapter provides an informal introduction of the main concepts related to analysis of movement. The concepts are introduced by illustrated examples, which also demostrate some techniques that may be used for visual exploretion and analysis of movement data. The exaples show how the capabilities of the computer and human can be combined to extract knowledge from movement data. This sets the stage for introducing the concept of visual analytics. The chapter also explains the objectives and the structure of the book.
|
650 |
|
4 |
|a Data mining (Computer science).
|
650 |
|
4 |
|a Data base management.
|
650 |
|
4 |
|a Pattern recognition.
|
650 |
|
4 |
|a Pattern perception.
|
650 |
|
4 |
|a Movement
|x Analysis.
|
650 |
|
4 |
|a Visual analytics.
|
650 |
|
4 |
|a Information visualization.
|
700 |
1 |
|
|a Andrienko, Gennady.
|
700 |
1 |
|
|a Andrienko, Natalia.
|
700 |
1 |
|
|a Bak, Peter.
|
700 |
1 |
|
|a Keim, Daniel.
|
700 |
1 |
|
|a Wrobel, Stefan.
|
852 |
|
|
|a INST
|b UNIPILB
|c MAIN
|e 20141208
|h 621.39΄9 VIS
|p 00172348
|q 00172348
|t LOAN
|y 0
|4 1
|
856 |
4 |
|
|d /webopac/covers/03/48617_9783642375828.jpg
|