|
|
|
|
| LEADER |
01665nam a2200277 a 4500 |
| 001 |
1/49379 |
| 008 |
200622s2013 gr b 00110 gre |
| 020 |
|
|
|a 9781449361327
|
| 035 |
|
|
|l 52381
|
| 040 |
|
|
|a GR-PeUP
|
| 082 |
0 |
0 |
|a 006.312 PRO
|
| 100 |
1 |
|
|a Provost, Foster.
|
| 245 |
1 |
0 |
|a Data science for business /
|c Foster Provost and Tom Fawcett.
|
| 260 |
0 |
|
|a Beijing :
|b O'Reilly,
|c c2013.
|
| 300 |
|
|
|a xxi, 386 σ. :
|b σχεδιαγρ., πίν. ;
|c 24 εκ.
|
| 500 |
|
|
|a Τίτλος από το εξώφυλλο: Data science for business :what you need to know about data mining and data-analytic thinking.
|
| 500 |
|
|
|a Περιεχόμενα: Introduction : data-analytic thinking -- Business problems and data science solutions -- Introduction to predictive modeling : from correlation to supervised segmentation -- Fitting a model to data -- Overfitting and its avoidance -- Similarity, neighbors, and clusters -- Decision analytic thinking I : what is a good model? -- Visualizing model performance -- Evidence and probabilities -- Representing and mining text -- Decision analytic thinking II : toward analytical engineering -- Other data science tasks and techniques -- Data science and business strategy -- Conclusion.
|
| 504 |
|
|
|a Περιέχει βιβλιογραφία και ευρετήριο.
|
| 650 |
|
4 |
|a Data mining.
|
| 650 |
|
4 |
|a Information Science.
|
| 650 |
|
4 |
|a Business
|x Data processing.
|
| 650 |
|
4 |
|a Data analysis.
|
| 650 |
|
4 |
|a Decision making.
|
| 650 |
|
4 |
|a Εξόρυξη δεδομένων.
|
| 700 |
1 |
|
|a Fawcett, Tom.
|
| 852 |
|
|
|a INST
|b UNIPILB
|c MAIN
|e 20200622
|h 006.312 PRO
|p 00182895
|q 00182895
|t LOAN
|y 4
|x 20230503
|4 1
|